中国沙漠 ›› 2025, Vol. 45 ›› Issue (3): 131-140.DOI: 10.7522/j.issn.1000-694X.2025.00039
收稿日期:
2025-04-07
修回日期:
2025-04-27
出版日期:
2025-05-20
发布日期:
2025-06-30
通讯作者:
贾晓红
作者简介:
李佳(2000—),女,河北玉田人,硕士研究生,研究方向为碳循环。E-mail: lijialijia@caf.ac.cn
基金资助:
Jia Li(), Xiaohong Jia(
), Dezheng Zhou, Bo Wu
Received:
2025-04-07
Revised:
2025-04-27
Online:
2025-05-20
Published:
2025-06-30
Contact:
Xiaohong Jia
摘要:
在维管植物发育受限的高寒、干旱、高温等极端环境,生物土壤结皮作为重要的地表活体覆盖物,在生态系统碳循环过程中扮演关键角色。明确生物土壤结皮发育在生态系统碳循环中的作用机制,可以为极端环境下碳中和目标的科学管理与实现提供理论依据。为准确评估极端环境生物土壤结皮发育对碳循环的影响,本文系统梳理了国内外相关研究,全面探讨生物土壤结皮的光合固碳、呼吸碳排放、净光合作用等关键过程,及其对大气碳交换和土壤有机碳的影响,并归纳不同结皮类型、不同区域环境条件下生物土壤结皮及结皮土壤系统碳循环过程的差异性,阐述其内在成因。综合分析表明,生物土壤结皮具有较强的光合固碳和呼吸碳排放能力,且在正常生理状态下表现为有机物的净积累;生物土壤结皮发育对土壤向大气碳排放速率具有双重调节作用,从长期效应来看,其发育增加了土壤向大气的碳排放量,激发碳源效应。生物土壤结皮发育增加土壤有机碳含量。苔藓结皮光合固碳能力、结皮土壤系统碳排放及其发育对土壤有机碳的促进作用明显强于藻类。降水和增温是引起不同区域生物土壤结皮及结皮土壤系统碳循环差异的主要因素,降水变化、增温等气候变化情景下生物土壤结皮碳循环动态响应及结皮土壤系统与大气碳交换呈非线性响应规律。
中图分类号:
李佳, 贾晓红, 周德正, 吴波. 极端环境生物土壤结皮发育对碳循环的影响[J]. 中国沙漠, 2025, 45(3): 131-140.
Jia Li, Xiaohong Jia, Dezheng Zhou, Bo Wu. Effects of biological soil crusts development on carbon cycling in extreme environments[J]. Journal of Desert Research, 2025, 45(3): 131-140.
研究区域 | 结皮类型 | 优势种 | 测定方式 | 固碳速率 /(μmol·m-2·s-1) | 参考 文献 |
---|---|---|---|---|---|
莫哈维沙漠 | 藻结皮 | 具鞘微鞘藻(Microcoleus vaginatus) | 样品采集 | 最大值 5.75 | [ |
藻结皮 | 具鞘藻属、伪枝藻属 | 样品采集 | 最大值 8.28 | [ | |
莫哈维沙漠 | 藻结皮 | 样品采集 | 最大值 3.93 | [ | |
藻结皮 | 具鞘藻属、伪枝藻属 | 样品采集 | 最大值 4.16 | [ | |
腾格里沙漠 | 藻结皮 | 样品采集 | 0.55~2.8 | [ | |
科罗拉多高原 | 藻结皮 | 具鞘藻属、念珠藻属、伪枝藻属 | 样品采集 | 0.07~2.93 | [ |
地衣结皮、苔藓结皮 | 齿肋赤藓(Syntrichia caninervis)、对齿藓属、胶衣属 | 样品采集 | 0.69~3.07 | [ | |
奇瓦瓦沙漠 | 藻结皮 | 具鞘藻属、念珠藻属、伪枝藻属 | 样品采集 | 0.14~2.3 | [ |
腾格里沙漠 | 藻结皮 | 固氮鱼腥藻(Anabaena azotica)、衣藻属 | 原位测定 | 0.05~1.84 | [ |
地衣结皮、苔藓结皮 | 真藓(Bryum argenteum)、齿肋赤藓 | 原位测定 | 0.22~2.25 | [ | |
科罗拉多高原 | 藻结皮 | 具鞘藻属 | 原位测定 | 0.10~1.48 | [ |
藻结皮、地衣结皮 | 具鞘藻属、念珠藻属、伪枝藻属 | 原位测定 | 0.30~1.52 | [ | |
奇瓦瓦沙漠 | 藻结皮 | 具鞘藻属 | 原位测定 | 0.05~1.23 | [ |
藻结皮、地衣结皮 | 具鞘藻属、念珠藻属、伪枝藻属 | 原位测定 | 0.50~2.61 | [ |
表1 结皮光合固碳速率
Table 1 Photosynthetic carbon sequestration rate of BSCs
研究区域 | 结皮类型 | 优势种 | 测定方式 | 固碳速率 /(μmol·m-2·s-1) | 参考 文献 |
---|---|---|---|---|---|
莫哈维沙漠 | 藻结皮 | 具鞘微鞘藻(Microcoleus vaginatus) | 样品采集 | 最大值 5.75 | [ |
藻结皮 | 具鞘藻属、伪枝藻属 | 样品采集 | 最大值 8.28 | [ | |
莫哈维沙漠 | 藻结皮 | 样品采集 | 最大值 3.93 | [ | |
藻结皮 | 具鞘藻属、伪枝藻属 | 样品采集 | 最大值 4.16 | [ | |
腾格里沙漠 | 藻结皮 | 样品采集 | 0.55~2.8 | [ | |
科罗拉多高原 | 藻结皮 | 具鞘藻属、念珠藻属、伪枝藻属 | 样品采集 | 0.07~2.93 | [ |
地衣结皮、苔藓结皮 | 齿肋赤藓(Syntrichia caninervis)、对齿藓属、胶衣属 | 样品采集 | 0.69~3.07 | [ | |
奇瓦瓦沙漠 | 藻结皮 | 具鞘藻属、念珠藻属、伪枝藻属 | 样品采集 | 0.14~2.3 | [ |
腾格里沙漠 | 藻结皮 | 固氮鱼腥藻(Anabaena azotica)、衣藻属 | 原位测定 | 0.05~1.84 | [ |
地衣结皮、苔藓结皮 | 真藓(Bryum argenteum)、齿肋赤藓 | 原位测定 | 0.22~2.25 | [ | |
科罗拉多高原 | 藻结皮 | 具鞘藻属 | 原位测定 | 0.10~1.48 | [ |
藻结皮、地衣结皮 | 具鞘藻属、念珠藻属、伪枝藻属 | 原位测定 | 0.30~1.52 | [ | |
奇瓦瓦沙漠 | 藻结皮 | 具鞘藻属 | 原位测定 | 0.05~1.23 | [ |
藻结皮、地衣结皮 | 具鞘藻属、念珠藻属、伪枝藻属 | 原位测定 | 0.50~2.61 | [ |
研究区域 | 结皮类型 | 优势种 | 结皮呼吸速率/(μmol·m-2·s-1) | 参考文献 |
---|---|---|---|---|
美国犹他州南部 | 地衣结皮 | 胶衣属 | 0~1.42 | [ |
双缘衣属 | 0~1.92 | [ | ||
磷网衣属 | 0~2.53 | [ | ||
科罗拉多高原 | 藻结皮 | 具鞘藻属、念珠藻属、伪枝藻属 | 0~1.82 | [ |
地衣结皮、苔藓结皮 | 齿肋赤藓、对齿藓属、胶衣属 | 0~2.72 | [ | |
奇瓦瓦沙漠 | 藻结皮 | 具鞘藻属、念珠藻属、伪枝藻属 | 0~2.34 | [ |
地衣结皮、苔藓结皮 | 胶衣属 | 0~3.58 | [ |
表2 结皮呼吸碳排放速率
Table 2 Respiration carbon emission rate of BSCs
研究区域 | 结皮类型 | 优势种 | 结皮呼吸速率/(μmol·m-2·s-1) | 参考文献 |
---|---|---|---|---|
美国犹他州南部 | 地衣结皮 | 胶衣属 | 0~1.42 | [ |
双缘衣属 | 0~1.92 | [ | ||
磷网衣属 | 0~2.53 | [ | ||
科罗拉多高原 | 藻结皮 | 具鞘藻属、念珠藻属、伪枝藻属 | 0~1.82 | [ |
地衣结皮、苔藓结皮 | 齿肋赤藓、对齿藓属、胶衣属 | 0~2.72 | [ | |
奇瓦瓦沙漠 | 藻结皮 | 具鞘藻属、念珠藻属、伪枝藻属 | 0~2.34 | [ |
地衣结皮、苔藓结皮 | 胶衣属 | 0~3.58 | [ |
研究区域 | 结皮类型 | 优势种 | 裸土碳排放速率 /(μmol·m-2·s-1) | 结皮土壤系统碳 排放速率 /(μmol·m-2·s-1) | 结皮发育对土壤 碳排放速率 的影响 | 参考 文献 |
---|---|---|---|---|---|---|
共和盆地 | 藻结皮 | — | 0.43~1.53 | 0.49~2.36 | 促进 | [ |
苔藓结皮 | — | 0.43~1.53 | 0.59~3.13 | 促进 | [ | |
黄土高原 | 苔藓结皮 | 极地真藓(Bryum arcticum)、土生扭口藓(Barbula vinealis) | 1.45~2.01 | 1.19~1.66 | 抑制 | [ |
毛乌素沙地 | 藻结皮 | — | 0.50~1.55 | 0.57~1.66 | 促进 | [ |
苔藓结皮 | — | 0.50~1.55 | 0.86~1.95 | 促进 | [ | |
科尔沁沙地 | 藻结皮、苔藓结皮 | 蓝藻、真藓 | 0.45~12.35 | 0.40~4.86 | 抑制 | [ |
表3 结皮发育对土壤碳排放速率的影响
Table 3 Effect of BSCs development on carbon emission rate
研究区域 | 结皮类型 | 优势种 | 裸土碳排放速率 /(μmol·m-2·s-1) | 结皮土壤系统碳 排放速率 /(μmol·m-2·s-1) | 结皮发育对土壤 碳排放速率 的影响 | 参考 文献 |
---|---|---|---|---|---|---|
共和盆地 | 藻结皮 | — | 0.43~1.53 | 0.49~2.36 | 促进 | [ |
苔藓结皮 | — | 0.43~1.53 | 0.59~3.13 | 促进 | [ | |
黄土高原 | 苔藓结皮 | 极地真藓(Bryum arcticum)、土生扭口藓(Barbula vinealis) | 1.45~2.01 | 1.19~1.66 | 抑制 | [ |
毛乌素沙地 | 藻结皮 | — | 0.50~1.55 | 0.57~1.66 | 促进 | [ |
苔藓结皮 | — | 0.50~1.55 | 0.86~1.95 | 促进 | [ | |
科尔沁沙地 | 藻结皮、苔藓结皮 | 蓝藻、真藓 | 0.45~12.35 | 0.40~4.86 | 抑制 | [ |
研究区域 | 结皮类型 | 优势种 | 结皮土壤系统净碳通量 /(μmol·m-2·s-1) | 参考文献 |
---|---|---|---|---|
纳米比亚沙漠 | 地衣结皮 | 荒漠微孢衣 | -10.02~3.01 | [ |
橙衣属 | -7.25~1.88 | [ | ||
小网衣属 | -6.21~1.02 | [ | ||
古尔班通古特沙漠 | 苔藓结皮 | — | -0.28~1.18 | [ |
藻结皮、地衣结皮 | — | -0.18~1.20 | [ | |
共和盆地 | 藻结皮 | — | -0.01~4.83 | [ |
苔藓结皮 | — | 0.20~5.10 | [ | |
毛乌素沙地 | 藻结皮 | — | -0.18~1.43 | [ |
苔藓结皮 | — | -1.24~1.38 | [ | |
黄土高原 | 藻结皮 | 0.13~2.00 | [ | |
苔藓结皮 | 短叶扭口藓(Barbula tectorum) | -1.02~1.40 | [ |
表4 结皮土壤系统净碳通量
Table 4 Net carbon flux in BSC-soil system
研究区域 | 结皮类型 | 优势种 | 结皮土壤系统净碳通量 /(μmol·m-2·s-1) | 参考文献 |
---|---|---|---|---|
纳米比亚沙漠 | 地衣结皮 | 荒漠微孢衣 | -10.02~3.01 | [ |
橙衣属 | -7.25~1.88 | [ | ||
小网衣属 | -6.21~1.02 | [ | ||
古尔班通古特沙漠 | 苔藓结皮 | — | -0.28~1.18 | [ |
藻结皮、地衣结皮 | — | -0.18~1.20 | [ | |
共和盆地 | 藻结皮 | — | -0.01~4.83 | [ |
苔藓结皮 | — | 0.20~5.10 | [ | |
毛乌素沙地 | 藻结皮 | — | -0.18~1.43 | [ |
苔藓结皮 | — | -1.24~1.38 | [ | |
黄土高原 | 藻结皮 | 0.13~2.00 | [ | |
苔藓结皮 | 短叶扭口藓(Barbula tectorum) | -1.02~1.40 | [ |
1 | Weber B, Belnap J, Büdel B,et al.What is a biocrust?A refined,contemporary definition for a broadening research community[J].Biological Reviews,2022,97(5):1768-1785. |
2 | 李新荣,张元明,赵允格.生物土壤结皮研究:进展、前沿与展望[J].地球科学进展,2009,24(1):11-24. |
3 | Guida G, Nicosia A, Settanni L,et al.A review on effects of biological soil crusts on hydrological processes[J].Earth-Science Reviews,2023,243:104516. |
4 | 张元明,王雪芹.荒漠地表生物土壤结皮形成与演替特征概述[J].生态学报,2010,30(16):4484-4492. |
5 | 李新荣.荒漠生物土壤结皮生态与水文学研究[M].北京:高等教育出版社,2012:16-30. |
6 | 马昕昕.黄土高原退耕草地土壤有机碳固存对放牧干扰的响应及机制[D].杨凌:中国科学院教育部水土保持与生态环境中心,2023. |
7 | 李永刚,张元明.干旱荒漠区不同藓结皮斑块碳通量对降雨量变化的响应[J].生态学报 2023,43(4):1584-1595. |
8 | 赵河聚.高寒沙区生物土壤结皮-土壤系统碳收支对模拟增温的响应[D].北京:中国林业科学研究院,2020. |
9 | Lv G, Jin J, He M,et al.Soil moisture content dominates the photosynthesis of C3 and C4 plants in a desert steppe after long-term warming and increasing precipitation[J].Plants,2023,12(16):2903. |
10 | 王爱国.黄土高原不同侵蚀区生物结皮对土壤CO2通量的影响[D].杨凌:西北农林科技大学,2013. |
11 | 李炳垠.毛乌素沙地生物结皮的光合及土壤CO2通量特征研究[D].杨凌:西北农林科技大学,2018. |
12 | Bowker M A, Reed S C, Belnap J,et al.Temporal variation in community composition,pigmentation,and Fv/Fm of desert cyanobacterial soil crusts[J].Microbial Ecology,2002,43(1):13-25. |
13 | Garcia-Pichel F, Belnap J, Neuer S,et al.Estimates of global cyanobacterial biomass and its distribution[J].Algological Studies,2003,109(1):213-227. |
14 | 王凯,厉萌萌,刘德权,等.腾格里沙漠不同组成生物结皮特征及其对土壤酶活性的影响[J].生态学报,2022,42(14):5859-5868. |
15 | Brostoff W N, Rasoul Sharifi M, Rundel P W.Photosynthesis of cryptobiotic soil crusts in a seasonally inundated system of pans and dunes in the western Mojave Desert,CA:field studies[J].Flora-Morphology,Distribution,Functional Ecology of Plants,2005,200(6):592-600. |
16 | 苏延桂,李新荣,陈应武,等.不同演替序列的藻结皮净光合速率日变化特征[J].兰州大学学报(自然科学版),2010,46(专辑):1-6. |
17 | Grote E E, Belnap J, Housman D C,et al.Carbon exchange in biological soil crust communities under differential temperatures and soil water contents:implications for global change[J].Global Change Biology,2010,16(10):2763-2774. |
18 | Li X R, Zhang P, Su Y G,et al.Carbon fixation by biological soil crusts following revegetation of sand dunes in arid desert regions of China:a four-year field study[J].Catena,2012,97:119-126. |
19 | Housman D C, Powers H H, Collins A D,et al.Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert[J].Journal of Arid Environments,2006,66(4):620-634. |
20 | 辜晨.高寒沙区生物土壤结皮覆盖对土壤碳通量的影响[D].北京:中国林业科学研究院,2016. |
21 | 苏延桂,李新荣,张志山,等.干旱人工植被区藻结皮光合固碳的时间效应研究[J].土壤学报,2011,48(3):570-577. |
22 | Lange O L, Meyer A, Zellner H,et al.Photosynthesis and water relations of lichen soil crusts:field measurements in the coastal fog zone of the Namib Desert[J].Functional Ecology,1994,8(2):253-264. |
23 | 贺祯子,徐冰鑫,刘文静,等.荒漠生物结皮碳交换对模拟增温和降雨变化的响应[J].中国沙漠,2024,44(3):269-278. |
24 | 韩旭,张鹏,赵洋,等.生物土壤结皮光合固碳活性对水热因子的响应[J].兰州大学学报(自然科学版),2016,52(4):510-515. |
25 | 赵东阳.黄土高原两种质地土壤藓结皮的呼吸特征与变化规律[D].沈阳:沈阳农业大学,2016. |
26 | Elbert W, Weber B, Burrows S,et al.Contribution of cryptogamic covers to the global cycles of carbon and nitrogen[J].Nature Geoscience,2012,5(7):459-462. |
27 | 冯薇.毛乌素沙地生物结皮光合固碳过程及对土壤碳排放的影响[D].北京:北京林业大学,2014. |
28 | Fenton J H C.The rate of peat accumulation in Antarctic moss banks[J].Journal of Ecology,1980,68(1):211-228. |
29 | Lange O L, Belnap J, Reichenberger H.Photosynthesis of the cyanobacterial soil-crust lichen collema tenax from arid lands in southern utah,USA:role of water content on light and temperature responses of CO2 exchange[J].Functional Ecology,1998,12(2):195-202. |
30 | Farrar J F, Smith D C.Ecological physiology of the lichen Hypogymnia physodes [J].New Phytologist,1976,77(1):115-125. |
31 | Lange O L, Belnap J, Reichenberger H,et al.Photosynthesis of green algal soil crust lichens from arid lands in southern Utah,USA:role of water content on light and temperature responses of CO2 exchange[J].Flora-Morphologie,Geobotanik,Oekophysiologie,1997,192(1):1-15. |
32 | Belnap J, Lange O L.Biological Soil Crusts:Structure,Function,and Managemen[M].Berlin,Germany:Springer-Verlag Berlin Heidelberg,2003:221-239. |
33 | Su Y, Wu L, Zhang Y.Characteristics of carbon flux in two biologically crusted soils in the Gurbantunggut Desert,Northwestern China[J].Catena,2012,96:41-48. |
34 | 赵洋.不同类型生物土壤结皮对土壤呼吸的影响[D].兰州:中国科学院西北生态环境资源研究院,2013. |
35 | Xiao B, Wang H, Fan J,et al.Biological soil crusts decrease soil temperature in summer and increase soil temperature in winter in semiarid environment[J].Ecological Engineering,2013,58:52-56. |
36 | 李玉强,赵哈林,赵玮,等.生物结皮对土壤呼吸的影响作用初探[J].水土保持学报,2008,22(3):106-151. |
37 | 管超,张鹏,李新荣.腾格里沙漠东南缘生物结皮土壤呼吸对水热因子变化的响应[J].植物生态学报,2017,41(3):301-310. |
38 | 管超.干旱区生物结皮土壤呼吸特征及其对增温和降水变化的响应[D].兰州:中国科学院西北生态环境资源研究院,2018. |
39 | Wang W X, Cheng R M, Shi Z M,et al.Seasonal dynamics of soilrespiration and nitrification in three subtropical plantations in southern China[J].Forest-Biogeosciences and Forestry,2016,9(3):813-821. |
40 | 李炳垠,卜崇峰,李宜坪,等.毛乌素沙地生物结皮覆盖土壤碳通量日动态特征及其影响因子[J].水土保持研究,2018,25(4):174-180. |
41 | 王博,包玉海,刘静,等.库布齐沙漠植被恢复对风沙土壤碳通量与碳储量的影响[J].土壤,2022,54(3):539-546. |
42 | 辜晨,贾晓红,吴波,等.高寒沙区生物土壤结皮覆盖土壤碳通量对模拟降水的响应[J].生态学报,2017,37(13):4423-4433. |
43 | 贾晓红,辜晨,吴波,等.干旱沙区生物土壤结皮覆盖土壤CO2对脉冲式降雨的响应[J].中国沙漠,2016,36(2):423-432. |
44 | 赵蓉,李小军,赵洋,等.固沙植被区两类结皮斑块土壤呼吸对不同频率干湿交替的响应[J].生态学杂志,2015,34(1):138-144. |
45 | Zhao R, Hui R, Wang Z,et al.Winter snowfall can have a positive effect on photosynthetic carbon fixation and biomass accumulation of biological soil crusts from the Gurbantunggut Desert,China[J].Ecological Research,2016(31):251-262. |
46 | 窦韦强,田乐乐,肖波,等.黄土高原藓结皮土壤呼吸速率对降雨量变化的响应[J].生态学报,2022,42(5):1703-1715. |
47 | 赵洋,齐欣林,陈永乐,等.极端降雨事件对不同类型生物土壤结皮覆盖土壤碳释放的影响[J].中国沙漠,2013,33(2):543-548. |
48 | 王黎黎,曹晓明.干旱区不同降雨模式对藻结皮覆被区土壤碳释放的影响[J].水土保持通报,2020,40(4):39-44. |
49 | Wang B, Zha T S, Jia X,et al.Soil moisture modifies the response of soil respiration to temperature in a desert shrub ecosystem[J].Biogeosciences,2014,11(2):259-268. |
50 | 徐冰鑫,胡宜刚,张志山,等.模拟增温对荒漠生物土壤结皮-土壤系统CO2、CH4和N2O通量的影响[J].植物生态学报,2014,38(8):809-820. |
51 | Luo C Y, Xu G G, Chao Z G,et al.Effect of warming and grazing on litter mass loss and temperature sensitivity of litter and dung mass loss on the Tibetan plateau[J].Global Change Biology,2010,16(5):1606-1617. |
52 | 管超,张鹏,陈永乐,等.生物结皮-土壤呼吸对冬季低温及模拟增温的响应[J].应用生态学报,2016,27(10):3213-3220. |
53 | 赵河聚,岳艳鹏,贾晓红,等.模拟增温对高寒沙区生物土壤结皮-土壤系统呼吸的影响[J].植物生态学报,2020,44(9):916-925. |
54 | Guan C, Li X, Chen N,et al.Warming effects on soil respiration in moss-dominated crusts in the Tengger Desert, Northern China[J].Plant and Soil,2019,443(1/2):591-603. |
55 | 尹瑞平,王峰,吴永胜,等.毛乌素沙地南缘沙丘生物结皮中微生物数量及其影响因素[J].中国水土保持,2014,(12):40-44. |
56 | Su Y G, Wu L, Zhou Z B,et al.Carbon flux in deserts depends on soil cover type:a case study in the Gurbantunggute Desert,North China[J].Soil Biology and Biochemistry,2013,58:332-340. |
57 | 韦应欣,周利军,卜崇峰,等.两类典型荒漠生物结皮覆盖土壤碳通量月变化特征及其影响因子[J].水土保持研究,2021,28(6):153-161. |
58 | 吴林,苏延桂,张元明.模拟降水对古尔班通古特沙漠生物结皮表观土壤碳通量的影响[J].生态学报,2012,32(13):4103-4113. |
59 | Sun J, Yu K, Chen N,et al.Biocrusts modulate carbon losses under warming across global drylands:a bayesian meta-analysis[J].Soil Biology and Biochemistry,2024,188:109214. |
60 | 田国霞,朱娉婷,张淇,等.增温对生物土壤结皮微生物群落组成及其呼吸作用的影响[J].华中农业大学学报,2024,43(4):51-59. |
61 | Housman D C, Grote E E, Belnap J.Annual CO2 flux from a biological soil crust system on the Colorado Plateau:effects of increased temperature and summer precipitation[C]//Ecological Society of America.Ecological Society of America Annual Meeting Abstracts,2007. |
62 | Eldridge D J, Leys J F.Exploring some relationships between biological soil crusts,soil aggregation and wind erosion[J].Journal of Arid Environments,2003,53(4):457-466. |
63 | Yang K, Zhao Y, Gao L.Biocrust succession improves soil aggregate stability of subsurface after “Grain for Green” project in the hilly Loess Plateau,China[J].Soil and Tillage Research,2022,217:105290. |
64 | 吴丽,张高科,陈晓国,等.生物结皮的发育演替与微生物生物量变化[J].环境科学,2014,35(4):1479-1485. |
65 | 赵允格,许明祥,王全九,等.黄土丘陵区退耕地生物结皮对土壤理化性状的影响[J].自然资源学报,2006(3):441-448. |
66 | 刘艳梅,李新荣,何明珠,等.生物土壤结皮对土壤微生物量碳的影响[J].中国沙漠,2012,32(3):669-673. |
67 | 刘艳梅,杨航宇,李新荣.生物土壤结皮对荒漠区土壤微生物生物量的影响[J].土壤学报,2014,51(2):394-401. |
68 | 焦冰洁,张丙昌,赵康.生物结皮演替对黄土高原水蚀风蚀交错区土壤氮素转化及微生物活性的促进效应[J].中国沙漠,2023,43(4):191-199. |
69 | 杨航宇,刘艳梅,王廷璞.荒漠区生物土壤结皮对土壤酶活性的影响[J].土壤学报,2015,52(3):654-664. |
70 | Wang B, Huang Y, Li N,et al.Initial soil formation by biocrusts:nitrogen demand and clay protection control microbial necromass accrual and recycling[J].Soil Biology and Biochemistry,2022,167:108607. |
71 | Miralles I, Trasar-Cepeda C, Leirós M C,et al.Labile carbon in biological soil crusts in the Tabernas Desert,SE Spain[J].Soil Biology and Biochemistry,2013,58:1-8. |
72 | Xu H, Zhang Y, Shao X,et al.Soil nitrogen and climate drive the positive effect of biological soil crusts on soil organic carbon sequestration in drylands:a meta-analysis[J].Science of The Total Environment,2022,803:150030. |
73 | Niu J, Yang K, Tang Z,et al.Relationships between soil crust development and soil properties in the desert region of North China[J].Sustainability,2017,9(5):725-739. |
74 | Monus B D, Nghalipo E N, Marufu V J,et al.Contributions of hypolithic communities to surface soil organic carbon across a hyperarid-to-arid climate gradient[J].Geoderma,2023,433:116428. |
75 | Zhang Z, Zhao Y, Dong X,et al.Evolution of soil respiration depends on biological soil crusts across a 50-year chronosequence of desert revegetation[J].Soil Science and Plant Nutrition (Tokyo),2016,62(2):140-149. |
76 | Lange O L, Allan Green T G, Melzer B,et al.Water relations and CO2 exchange of the terrestrial lichen Teloschistes capensis in the Namib Fog Desert:measurements during two seasons in the field and under controlled conditions[J].Flora-Morphology,Distribution,Functional Ecology of Plants,2006,201(4):268-280. |
77 | Li X R, Song G, Hui R,et al.Precipitation and topsoil attributes determine the species diversity and distribution patterns of crustal communities in desert ecosystems[J].Plant and Soil,2017,420(1/2):163-175. |
[1] | 马亚丽, 马莉, 杨丽萍, 王思晴, 赵长明, 陈宁. 生态水文视角下的旱区生物土壤结皮-维管植物共存模式[J]. 中国沙漠, 2025, 45(3): 121-130. |
[2] | 赵丽娜, 谢燚谛, 贺子康, 柴梦洋, 高源婧坤, 吴影, 张杰, 古绍彬. 荒漠生物土壤结皮碳降解菌株的筛选鉴定及特性分析[J]. 中国沙漠, 2025, 45(3): 185-190. |
[3] | 赵逸雪, 赵洋, 连煜超, 赵燕翘, 许文文. 固沙灌木种类和密度对凋落物及生物土壤结皮的影响[J]. 中国沙漠, 2025, 45(3): 262-270. |
[4] | 赵洋, 连煜超, 赵燕翘, 许文文, 赵逸雪. 生物土壤结皮在防沙治沙中的应用综述[J]. 中国沙漠, 2025, 45(3): 31-38. |
[5] | 虎瑞, 高艳红, 张鹏, 李小军. 干旱沙区植被恢复与重建对碳循环关键过程的影响研究进展[J]. 中国沙漠, 2025, 45(3): 60-71. |
[6] | 张静雯, 殷金悦, 霍佳琪, 程凤, 高娜, 杨蕊, 鲍婧婷, 王进. 生态修复领域菌藻共生体系研究进展[J]. 中国沙漠, 2025, 45(3): 93-101. |
[7] | 王洋, 王振亭. 植物固沙最低盖度的理论计算[J]. 中国沙漠, 2025, 45(2): 97-101. |
[8] | 张蕊, 赵学勇, 李刚, 武雅琳, 刘新平. 干旱半干旱区草地植物-土壤响应降水和管理措施的研究综述[J]. 中国沙漠, 2025, 45(1): 131-140. |
[9] | 贺郝钰, 刘蔚, 常宗强, 侯春梅, 孙力炜, 迟秀丽. 腾格里沙漠南缘植被恢复对土壤有机碳组成及稳定性的影响[J]. 中国沙漠, 2024, 44(6): 307-317. |
[10] | 赵燕翘, 连煜超, 许文文, 赵逸雪, 韩高玲, 赵洋. 中国人工蓝藻结皮研究进展[J]. 中国沙漠, 2023, 43(5): 214-222. |
[11] | 冯彦淞, 杨彩红, 强玉泉. 耕作模式对河西绿洲灌区夏玉米农田土壤呼吸的影响[J]. 中国沙漠, 2023, 43(4): 200-208. |
[12] | 张胜男, 高海燕, 闫德仁, 黄海广. 沙漠生物土壤结皮演替对微生物群落结构和土壤酶活力的影响[J]. 中国沙漠, 2023, 43(3): 178-187. |
[13] | 史尧方, 薛娴, 尤全刚, 彭飞, 黄翠华. 阿里荒漠区土壤有机碳分布特征及其与土壤物理性质的关系[J]. 中国沙漠, 2023, 43(3): 284-294. |
[14] | 王楠, 赵燕翘, 许文文, 孙靖尧, 李承义, 赵洋. 两种荒漠蓝藻生长特征及其对培养水体微环境的影响[J]. 中国沙漠, 2023, 43(1): 66-74. |
[15] | 张美兰, 崔增团, 顿志恒, 贾蕊鸿, 张玉霞, 郭世乾, 崔倩怡, 葛承暄, 蔡立群, 董博. 近40年甘肃省耕层土壤有机碳时空分异及影响因素[J]. 中国沙漠, 2022, 42(6): 295-303. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
©2018中国沙漠 编辑部
地址: 兰州市天水中路8号 (730000)
电话:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn